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Iτ α= (7.43)

Eq. (7.43) is similar to Newton’s second law
for linear motion expressed symbolically as

F = ma

Just as force produces acceleration, torque

produces angular acceleration in a body. The

angular acceleration is directly proportional to

the applied torque and is inversely proportional

to the moment of inertia of the body. In this

respect, Eq.(7.43) can be called Newton’s second

law for rotational motion about a fixed axis.

Example 7.15  A cord of negligible mass
is wound round the rim of a fly wheel of
mass 20 kg and radius 20 cm. A steady
pull of 25 N is applied on the cord as shown
in Fig. 7.35. The flywheel is mounted on a
horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of
the wheel.

(b) Find the work done by the pull, when
2m of the cord is unwound.

(c) Find also the kinetic energy of the
wheel at this point. Assume that the
wheel starts from rest.

(d) Compare answers to parts (b) and (c).

Answer

Fig. 7.35

(a) We use I α = τ
the torque τ = F R

= 25 × 0.20 Nm (as R = 0.20m)

                        = 5.0 Nm

I = Moment of inertia of flywheel about its

axis 
2

2

MR
=

= 
220.0 (0.2)

2

×
 = 0.4 kg m2

α = angular acceleration
   = 5.0 N m/0.4 kg m2 = 12.5 s–2

(b) Work done by the pull unwinding 2m of the
cord

= 25 N × 2m = 50 J

(c) Let ω be the final angular velocity. The

kinetic energy gained =  
21

2
Iω ,

since the wheel starts from rest. Now,

2 2
0 02 , 0ω ω αθ ω= + =

The angular displacement θ = length of

unwound string / radius of wheel
= 2m/0.2 m = 10 rad

ω
2 22 12 5 10 0 250= × × =. . )(rad/s

∴

(d) The answers are the same, i.e. the kinetic energy
gained by the wheel = work   done by the force.
There is no loss of energy due to friction.   t

7.13 ANGULAR MOMENTUM IN CASE OF
ROTATION ABOUT A FIXED AXIS

We have studied in section 7.7, the angular
momentum of a system of particles. We already
know from there that the time rate of total
angular momentum of a system of particles
about a point is equal to the total external torque
on the system taken about the same point. When
the total external torque is zero, the total angular
momentum of the system is conserved.

We now wish to study the angular momentum
in the special case of rotation about a fixed axis.
The general expression for the total angular
momentum of the system of n particles is

L r p= ×
=
∑ i i

i

N

1
(7.25b)

We first consider the angular momentum of
a typical particle of the rotating rigid body. We
then sum up the contributions of individual
particles to get L of the whole body.

For a typical particle l = r × p. As seen in the
last section r = OP = OC + CP [Fig. 7.17(b)]. With
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p = m v ,

( ) ( )= × + ×OC v CP vm ml

The magnitude of the linear velocity v of the
particle at P is given by v = ωr⊥ where r⊥ is the
length of CP or the perpendicular distance of P
from the axis of rotation. Further, v is tangential
at P to the circle which the particle describes.
Using the right-hand rule one can check that
CP × v is parallel to the fixed axis. The unit
vector along the fixed axis (chosen as the z-axis)

is k̂ . Hence

( ) ˆ
⊥× =CP v km r mv

= 2 ˆ ω⊥ kmr (since υ = ωr⊥ )

Similarly, we can check that OC × v is
perpendicular to the fixed axis. Let us denote
the part of  l along the fixed axis (i.e. the z-axis)
by l

z
, then

 z = ×CP vml = 2 ˆω⊥ kmr

and = + ×OC vz ml l

We note that l
z
 is parallel to the fixed axis,

but l is not. In general, for a particle, the angular
momentum l is not along the axis of rotation,
i.e. for a particle, l and ωωωωω are not necessarily
parallel. Compare this with the corresponding
fact in translation. For a particle, p and v are
always parallel to each other.

For computing the total angular momentum
of the whole rigid body, we add up the
contribution of each particle of the body.

Thus

We denote by ⊥L  and zL  the components of

L  respectively perpendicular to the z-axis and

along the z-axis;

L OC v⊥ = ×∑ i i im (7.44a)

where m
i
 and v

i
 are respectively the mass and

the velocity of the ith particle and C
i
 is the centre

of the circle described by the particle;

and

or ˆω=L kz I (7.44b)

The last step follows since the perpendicular
distance of the ith particle from the axis is r

i
;

and by definition the moment of inertia of the

body about the axis of rotation is I m ri i= ∑ 2 .

Note z ⊥= +L L L (7.44c)

The rigid bodies which we have mainly
considered in this chapter are symmetric about
the axis of rotation, i.e. the axis of rotation is
one of their symmetry axes. For such bodies,
for a given OC

i
, for every particle which has a

velocity v
i
 , there is another particle of velocity

–v
i
  located diametrically opposite on the circle

with centre C
i
 described by the particle. Together

such pairs will contribute zero to ⊥L  and as a

result for symmetric bodies ⊥L  is zero, and

hence

ˆω= =L L kz I (7.44d)

For bodies, which are not symmetric about
the axis of rotation, L is not equal to L

z
 and

hence L does not lie along the axis of rotation.
Referring to Table 7.1, can you tell in which

cases L = L
z 
will not apply?

Let us differentiate Eq. (7.44b). Since k̂ is a

fixed (constant) vector, we get

d

d

d

d
z

t t
IL k( ) = ( )





ω
ˆ

Now, Eq. (7.28b) states

d

dt
=

L
ττττ

As we have seen in the last section, only
those components of the external torques which
are along the axis of rotation, need to be taken
into account, when we discuss rotation about a

fixed axis. This means we can take ˆτ= kττττ .

Since z ⊥= +L L L  and the direction of L
z
 (vector

k̂ ) is fixed, it follows that for rotation about a

fixed axis,

d ˆ
d

τ=
L

kz

t
(7.45a)

and 
d

0
dt

⊥ =
L

(7.45b)

Thus, for rotation about a fixed axis, the
component of angular momentum
perpendicular to the fixed axis is constant. As

ˆω=L kz I , we get from Eq. (7.45a),

( )d

d
I

t
ω τ= (7.45c)
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If the moment of inertia I does not change with
time,

( )d d

d d
I I I

t t

ωω α= =

and we get from Eq. (7.45c),

Iτ α= (7.43)

We have already derived this equation using
the work - kinetic energy route.

7.13.1 Conservation of angular momentum

We are now in a position to revisit the principle
of conservation of angular momentum in the
context of rotation about a fixed axis. From Eq.
(7.45c), if the external torque is zero,

L
z
 = Iω = constant (7.46)

For symmetric bodies, from Eq. (7.44d), L
z

may be replaced by L .(L and L
z 
 are respectively

the magnitudes of L and L
z
.)

This then is the required form, for fixed axis
rotation, of Eq. (7.29a), which expresses the
general law of conservation of angular
momentum of a system of particles.  Eq. (7.46)
applies to many situations that we come across
in daily life.  You may do this experiment with
your friend.  Sit on a swivel chair (a chair with a
seat, free to rotate about a pivot) with your arms
folded and feet not resting on, i.e., away from,
the ground.  Ask your friend to rotate the chair
rapidly. While the chair is rotating with

considerable angular speed stretch your arms
horizontally.  What happens?  Your angular
speed is reduced.  If you bring back your arms
closer to your body, the angular speed increases
again.  This is a situation where the principle of
conservation of angular momentum is
applicable.  If friction in the rotational
mechanism is neglected, there is no external
torque about the axis of rotation of the chair
and hence Iω is constant.  Stretching the arms
increases I about the axis of rotation, resulting
in decreasing the angular speed ω.  Bringing
the arms closer to the body has the opposite
effect.

A circus acrobat and a diver take advantage
of this principle.  Also, skaters and classical,
Indian or western, dancers performing a
pirouette (a spinning about a tip–top) on the toes
of one foot display ‘mastery’ over this principle.
Can you explain?

7.14  ROLLING MOTION

One of the most common motions observed in
daily life is the rolling motion.  All wheels used
in transportation have rolling motion.  For
specificness we shall begin with the case of a
disc, but the result will apply to any rolling body
rolling on a level surface.  We shall assume that
the disc rolls without slipping.  This means that
at any instant of time the bottom of the disc

Fig 7.36 (a) A demonstration of conservation of

angular momentum. A girl sits  on a

swivel chair and stretches her arms/

brings her arms closer to the body.

Fig 7.36 (b) An acrobat employing the principle of

conservation of angular momentum in

her performance.
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which is in contact with the surface is at rest
on the surface.

We have remarked earlier that rolling motion
is a combination of rotation and translation.  We
know that the translational motion of a system
of particles is the motion of its centre of mass.

Fig. 7.37 The rolling motion (without slipping) of a

disc on a level surface. Note at any instant,

the point of contact P
0
 of the disc with the

surface is at rest; the centre of mass of

the disc moves with velocity, v
cm

. The disc

rotates with angular velocity ω about its

axis which passes through C; v
cm

 =Rω,

where R is the radius of the disc.

Let v
cm

 be the velocity of the centre of mass

and therefore the translational velocity of the

disc. Since the centre of mass of the rolling disc

is at its geometric centre C (Fig. 7. 37), v
cm 

is

the velocity of C.  It is parallel to the level

surface.  The rotational motion of the disc is

about its symmetry axis, which passes through

C.  Thus, the velocity of any point of the disc,

like P
0
, P

1
 or P

2
, consists of two parts, one is the

translational velocity v
cm 

and the other is the

linear velocity v
r 
on account of rotation. The

magnitude of  v
r
 is v

r 
= rω, where ω is the angular

velocity of the rotation of the disc about the axis

and r is the distance of the point from the axis

(i.e. from C).  The velocity v
r 
is directed

perpendicular to the radius vector of the given

point with respect to C.  In Fig. 7.37, the velocity

of the point P
2
 (v

2
) and its components 

 
v

r 
and

v
cm 

are shown;  v
r 
here is perpendicular to CP

2 
.

It is easy to show that v
z
 is perpendicular to the

line P
O
P

2
. Therefore the line passing through P

O

and parallel to ωωωωω is called the instantaneous axis

of rotation.

At P
o
, the linear velocity, v

r
, due to rotation

is directed exactly opposite to the translational

velocity v
cm

.
 
Further the magnitude of  v

r 
here is

Rω, where R is the radius of the disc. The

condition that P
o 
is instantaneously at rest

requires v
cm  

= Rω. Thus for the disc the condition

for rolling without slipping is

υ ωcm R= (7.47)

Incidentally, this means that the velocity of

point P
1
 at the top of the disc (v

1
) has a

magnitude v
cm

+ Rω or 2 v
cm 

and is directed

parallel to the level surface. The condition (7.47)

applies to all rolling bodies.

7.14.1 Kinetic Energy of Rolling Motion

Our next task will be to obtain an expression
for the kinetic energy of a rolling body. The
kinetic energy of a rolling body can be separated
into kinetic energy of translation and kinetic
energy of rotation. This is a special case of a
general result for a system of particles,
according to which the kinetic energy of a
system of particles (K) can be separated into
the kinetic energy of translational motion of the
centre of mass (MV2/2) and kinetic energy of
rotational motion about the centre of mass of
the system of particles (K′). Thus,

(7.48)
We assume  this general result (see Exercise

7.31), and apply it to the case of rolling motion.

In our notation, the kinetic energy of the centre
of mass, i.e., the kinetic energy of translation,

of the rolling body is mv2
cm

 /2, where m is the
mass of the body and v

cm
 is the centre of the

mass velocity. Since the motion of the rolling

body about the centre of mass is rotation, K′
represents the kinetic energy of rotation of the

body; , where I is the moment of
inertia about the appropriate axis, which is the

symmetry axis of the rolling body. The kinetic
energy of  a rolling body, therefore, is given by

(7.49a)

Substituting I = mk2 where k  = the
corresponding radius of gyration of the body
and v

cm
= R ω, we get

or  (7.49b)
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Equation (7.49b) applies to any rolling body:
a disc, a cylinder, a ring or a sphere.

Example 7.16  Three bodies, a ring, a solid
cylinder and a solid sphere roll down the
same inclined plane without slipping.  They
start from rest.  The radii of the bodies are
identical.  Which of the bodies reaches the
ground with maximum velocity?

Answer  We assume conservation of energy of
the rolling body, i.e. there is no loss of energy
due to friction etc. The potential energy lost by
the body in rolling down the inclined plane
(= mgh) must, therefore, be equal to kinetic
energy gained.  (See Fig.7.38) Since the bodies
start from rest the kinetic energy gained is equal
to the final kinetic energy of the bodies.  From

Eq. (7.49b), 

2
2

2

1
1

2

k
K m

R
υ

 
= + 

 
, where v is the

final velocity of (the centre of mass of) the body.
Equating K and mgh,

Fig.7.38

2
2

2

1
1

2

k
mgh m

R
υ

 
= + 

 

or 
2

2 2

2

1

gh

k R
υ

 
=  

+ 

Note  is independent of the mass of the
rolling body;

For a ring, k2 = R2

2

1 1
ring

gh
υ =

+ ,

      = gh

For a solid cylinder k2 = R2/2

2

1 1 2
disc

ghυ =
+

      = 
4

3

gh

For a solid sphere k2 = 2R2/5

2

1 2 5
sphere

ghυ =
+

      = 
10

7

gh

From the results obtained it is clear that among
the three bodies the sphere has the greatest and
the ring has the least velocity of the centre of mass
at the bottom of the inclined plane.

Suppose the bodies have the same mass.  Which
body has the greatest rotational kinetic energy while
reaching the bottom of the inclined plane? t

SUMMARY

1. Ideally, a rigid body is one for which the distances between different particles of the
body do not change, even though there are forces on them.

2. A rigid body fixed at one point or along a line can have only rotational motion. A rigid
body not fixed in some way can have either pure translational motion or a combination
of translational and rotational motions.

3. In rotation about a fixed axis, every particle of the rigid body moves in a circle which
lies in a plane perpendicular to the axis and has its centre on the axis. Every Point in
the rotating rigid body has the same angular velocity at any instant of time.

4. In pure translation, every particle of the body moves with the same velocity at any
instant of time.

5. Angular velocity is a vector. Its magnitude is ω = dθ/dt and it is directed along the axis
of rotation. For rotation about a fixed axis, this vector ωωωωω has a fixed direction.
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